Biological response

 Lower pH reduces shell deposition rate and increases dissolution of deposited shell.

Water chemistry across SOAL

Water chemistry across SOAL

Habitats

Bare

Eelgrass

Oysters

 Eelgrass increases pH, presumably through photosynthetic drawdown of CO₂

AAMT research shows that eelgrass absorbs CO₂ and increases pH.

Hypothesis: Larvae exploit 1pH in eelgrass

Hypothesis: Larvae exploit fpH in eelgrass

OA refugia

Hypothesis: Larvae exploit fpH in eelgrass

OA refugia

Daytime larvae

Hypothesis: Larvae exploit **1**pH in eelgrass

OA refugia

<u>Daytime larvae</u>

Deep > shallow in grass

Deep ≈ shallow in bare

OA refugia

<u>Daytime larvae</u>

Deep > shallow in grass Deep ≈ shallow in bare Nighttime larvae

Deep < shallow in grass

Deep > shallow in grass
Deep ≈ shallow in bare

<u>Daytime larvae</u>

Deep > shallow in grass

Deep ≈ shallow in bare

Nighttime larvae

Deep < shallow in grass

Deep ≈ shallow in bare

Daytime larvae
Deep > shallow in grass
Deep ≈ shallow in bare

Nighttime larvae

<u>Daytime larvae</u>

Deep > shallow in grass Deep ≈ shallow in bare

Nighttime larvae

Habitats

Bare

Eelgrass

Daytime larvae

Deep > shallow in grass Deep ≈ shallow in bare

Nighttime larvae

0.4

0.2

0.0

Deep > shallow in grass Deep ≈ shallow in bare

Nighttime larvae

Habitats

Bare

Eelgrass

Daytime larvae

Deep > shallow in grass Deep ≈ shallow in bare

Nighttime larvae

Sites

Cherry Point Fidalgo Bay

Protection Island

Maury Island

Nisqually Reach

Skokomish Delta Port Gamble Bay

Case Inlet

Willapa Bay

Sensors

рΗ

Temperature

Salinity

Dissolved oxygen

Chlorophyll

Nearshore monitoring network 1.5 ¬ 1.0 pH anomaly (pH in eelgrass - 0.5 pH in bare) 0.0 --0.5 Fri Sat Sun Mon

Sensor arrays
 will help us
 evaluate
 variation in
 water
 chemistry
 across time.

Mapping expeditions at network sites will help us evaluate variation in water chemistry across spatial scales.

- 'Bioassays' outplanted oysters on buffered and unbuffered tiles
 - could let us identify network sites subject to OA stress.

Analysis of larvae will help us pinpoint populations and areas of concern – oyster larvae express different proteins under OA stress.